

Decay factor characterisation of selected paper products under optimal landfill anaerobic conditions using benchand pilot-scale reactors

Thaakira Jabaar, Prof T.M. Louw, Prof J.F. Gorgens & Prof E. van Rensburg

1. BACKGROUND

- Decay factors of landfilled waste are required for accurate GHG emission reporting
- South Africa relies on default IPCC values (50%)
- Impacts pulp and paper industries
- Empirical research needed to estimate countryspecific waste data

4. RESULTS

2. AIMS & OBJECTIVES

- Determine maximum biogas production potential via AD experiments
 - Calculate decay factors for 8 paper waste streams
 - Provide realistic estimate of decay

What is the decay factor? The portion of degradable organic carbon that is converted to CH₄ and CO₂

3. METHODOLOGY

Gas yields dependent on paper compositions and leachate quality

Higher holocellulose in papers showed higher biogas yields (eg. Office paper)

Higher lignin content

papers showed lower biogas yields (eg. Newsprint)

- Leachate batches influenced initial lag phases in CH₄ production
- Additives (eg. Silicons, waxes) affect accessibility to biodegradable portion of papers

5. CONCLUSIONS

Current IPCC 50% decay factor may not be appropriate

Newsprint Packaging Multilayered

Label

Paper

backing sacks paper paper paper paper paper Observed range of decay factors: 3.1% (Newsprint) to

54.7% (Office Paper)

Office

Material-specific factors needed for accurate GHG estimates

Scale effects must be considered in emissions calculations

More accurate factors better inform LCAs and GHG emission factors

Coated

Department: Science and Innovation **REPUBLIC OF SOUTH AFRICA**

Postgraduate Symposium 2024

Liquid

board

packaging

Chemical Engineering

forward together \cdot sonke siya phambili \cdot saam vorentoe