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Aim

Integrate chemical engineering domain 

knowledge with innovations in machine 

learning to develop a model that can be 

used for process monitoring.

Objectives

1. Extend GPR to satisfy linear and nonlinear 

constraints based on mass and energy 

balances.

2. Evaluate and compare method performance 

with traditional methods.

3. Evaluate method performance to perform 

sensor validation.

4. Apply to industrial case study using real 

process data.

1. Incorporate nonlinear 

constraints: 

• Current model limited to 

linear constraints.

• Extension to include 

nonlinear constraints is 

important for chemical 

engineering applications.

2. Incorporate sensor 

validation: 

• Model should be able to 

be used to detect sensor 

faults and reconstruct 

faulty measurements

3. Address computational 

concerns: 

• Computation time scales 

with 𝒪(𝑁^3 ).

• Sparse-approximation 

techniques required to 

scale up

Detection

Diagnosis

Reconstruction

Sensor Validation:

Making process data more reliable

• Process monitoring strategies aim at detecting faults and 

improving data quality.

• Reliable process data are required for safe, efficient and 

profitable operation of industrial processes.

• Fault detection makes use of statistical methods.

• Inaccurate measurements are detrimental to 

performance and result in economic losses or 

safety issues.

• Fault diagnosis aims at determining the root 

cause of a fault.

• Replacing erroneous measurements with 

reconciled estimates ensured good data 

reliability.

&
Gaussian Process 

Regression
Data Reconciliation

• Probabilistic machine learning method.

• Can model autocorrelation in data.

• Has seen a rise in popularity for process 

monitoring applications.

• Reconstruct measurement data to adhere to physical 

laws.

• Applied in process monitoring and process control.

Steady state data reconciliation

• Uses high confidence models (i.e., mass and energy 
conservation.

• Disregards data autocorrelation.

• Can only be applied at single time instance.

Dynamic data reconciliation

• Uses dynamic process models

• Dynamics models are expensive and difficult to 
develop.

• Parameter uncertainty can affect reconciled estimates

A Novel Combined Approach

• Combine the strengths of Gaussian process regression (GPR) 

and data reconciliation (DR).

Establishing a baseline Different sampling rates

Fault! Precision degradation

RMSE

DR SO-GPR C-MO-GPR

Baseline

Steady-state 5,8 1,6 1,0

Open loop 15,9 174,6 167,6

Different sampling rates

Steady-state 5,7 2,7 1,1

Open loop 12,4 168,0 64,9

Precision Degradation

Steady-state 21,9 2,6 1,3

Table 1: Performance comparison of data reconciliation (DR), single-output 

Gaussian process regression (SO-GPR) and constrained multi-output 

Gaussian process regression (C-MO-GPR) in various scenarios.

Figure 1: SO-GPR and C-MO-GPR outperforms DR in a steady-state 

simulation of a blending tank, making accurate and confident predictions 

close to the ground truth. DR performs better when the process is highly 

dynamic.

Figure 2: C-MO-GPR and DR can leverage information gained from the 

process model and other measurements to still make accurate predictions, 

while SO-GPR suffers in performance.

Figure 3: (left) A sudden sensor precision degradation fault leads to a 

decrease in DR performance; gross error detection and removal is required 

as a prior step. In contrast, the GPR models’ predictions remain close to 

the ground truth. (right) The negative log loss for the predictions of the 

constrained GPR model may prove useful to identify faulty scenarios.

• Constraints are built into the covariance function.

• Model multi-output GPs on a lower-dimensional 

constraint plane.

• Project latent GPs into the measurement space via 

linear transformation.

1. Performs data reconciliation: Predictions necessarily 

satisfy conservation law constraints.

2. Leverages GPR strengths by giving both a prediction 

and uncertainty estimation for ground truth.

“Similar inputs 

have similar 

outputs”

Similarity determined by 

user-defined covariance 

function.

Provides uncertainty 

estimation for 

predictions.
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Diagram 1: By modelling a multi-output GP in the plane defined by the 

conservation constraints, such that it best fits the noisy measurements, a 

linear combination of the latent GPs yield correlated Gaussian processes 

whose predictions satisfy the constraints at every point in time. 
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1. Model latent GP in 

constraint plane

2. Apply linear 

transform

3. Obtain 

constrained GPs
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