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Sensor Validation:
Making process data more reliable

Gaussian Process
Regression

Data Reconciliation

&

« Reconstruct measurement data to adhere to physical
laws.
« Applied in process monitoring and process control.

* Probabilistic machine learning method.
. « Can model autocorrelation in data.
Detection « Has seen a rise in popularity for process
* Process monitoring strategies aim at detecting faults and monitoring applications.
improving data quality.
« Reliable process data are required for safe, efficient and

Steady state data reconciliation

Provides uncertainty

profitable operation of industrial processes. «Similar i = Ul . . _

. Fault detection makes use of statistical methods. imilar inputs . — estimation for » Uses high confidence models (i.e., mass and energy
have similar predictions. conservation.
. _ outputs” - Disregards data autocorrelation.

Diagnosis » Can only be applied at single time instance.
 Inaccurate measurements are detrimental to

performance and result in economic losses or : N

safety issues. Dynam]C data reconciliation
« Fault diaghosis aims at determining the root >

cause of a fault.

Similarity determined by
user-defined covariance

e Uses dynamic process models
e Dynamics models are expensive and difficult to

Reconstruction | function. develop.

* Replacing erroneous measurements with 1 e Parameter uncertainty can affect reconciled estimates
reconciled estimates ensured good data n = g, exp {_ — (x —x,)2 }
reliability. 21

A Novel Combined Approach 3. Obtain
constrained GPs
. A
® Combine the strengths of Gaussian process regression (GPR) 1. Model l.atent GP in F S -
iliati constraint plane 1 P
and data reconciliation (DR). _o- 2
® Constraints are built into the covariance function. y ™ %%fof 2. Apply linear
\ S
® Model multi-output GPs on a lower-dimensional ] Qo“&‘b ﬁ%@ transform N
Aim < constraint plane. F3 i x * * *% ‘ | N P —
. (/ ® Project latent GPs into the measurement space via y ) >t
. - i ®
ntegrate chemical engineering domain )(}\ linear transformation. . .
Kknowledge with innovations in machine ’% 1. Performs data reconciliation: Predictions necessarily
learning to develop a model that can be A satisfy conservation law constraints. F; PR S—— S
used for process monitoring. C >t
?i_\ 2. Leverages GPR strengths by giving both a prediction

and uncertainty estimation for ground truth. Diagram 1: By modelling a multi-output GP in the plane defined by the

conservation constraints, such that it best fits the noisy measurements, a
linear combination of the latent GPs yield correlated Gaussian processes
whose predictions satisfy the constraints at every point in time.

Objectives

1. Extend GPR to satisfy linear and nonlinear
constraints based on mass and energy

balances.
2. Evaluate and compare method performance I
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1. Incorporate nonlinear
constraints:

Table 1: Performance comparison of data reconciliation (DR), single-output
and constrained multi-output

Gaussian process

regression

(SO-GPR)

2350

. Current model limited to 3. Address computational Gaussian process regression (C-MO-GPR) in various scenarios. S ) P00 e
. _ * 2300 | A 4500 ® -G - SOGPR
linear constraints. concerns: RMSE O | o ] ]

« Extension to include - Computation time scales DR SO-GPR  C-MO-GPR | ety Al b N = w0 ARV E
nonlinear constraints is with O(N"3). o o P o i 1l
important for chemical * Sparse-approximation ;%mo T T X R R ¢ ol
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engineering applications. techniques required to Steady-state 5,8 1,6 1,0 St R S R
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be used to detect sensor Open loop 12,4 168,0 64,9 Figure 3: (left) A sudden sensor precision degradation fault leads to a
faults and reconstruct decrease in DR performance; gross error detection and removal is required
faulty measurements Steady-stat 219 7 6 13 as a prior step. In contrast, the GPR models’ predictions remain close to
€ady-state , , : the ground truth. (right) The negative log loss for the predictions of the
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constrained GPR model may prove useful to identify faulty scenarios.

forward together - sonke siya phambili - saam vorentoe



	Slide 1: Constrained Bayesian Methods for Sensor Validation

