

Aspen® VII simulation and techno-economic analysis of fractional condensation and distillation of plastic waste pyrolysis oil for sustainable aviation fuel production N. Hanekom; J.F. Görgens; C.E. Schwarz*

Introduction

- Current plastic waste management practices are unable to curb rate of waste production.
- Pyrolysis can turn plastic waste into gasoline/diesel.
- Pyrolytic gasoline/diesel is not profitable enough for widespread adoption.
- More expensive fuels could possibly mitigate this problem.

Research Questions

- Can SAF-compliant fuel be produced from plastic waste, according to ASPEN ® VII simulations?
- Which separation method, fractional condensation or fraction distillation is more suitable for this process?
- What alternative solution are possible for post-process of specification parameters?

Total Plastic Waste Management

Methodology

✓ - Completed➢ - In Progress

Simu	latio	on I	Det	ails					
Feedstock	Euro	Hung	BC 1	BC 2	Feedstock	Euro	Hung	BC 1	BC 2
Pre	-pyrolysis	Compos	ition			Distillatio	n Columi	าร	
LDPE	31.5%	22%	0%	0%	Total Travs	9	9	9	9

HDPE	21,5%	15%	100%	100%
PP	35%	49%	0%	0%
PS	12%	14%	0%	0%

Feed Tray		7		7		6	ļ	
Reflux Ratio		5		5		3	(
Distillate Flow	/	11%		5%		2%	55%	
Mids Tray		5		5		6		
Mids Flow	15	15,5%		11%		6%	15%	
Mids Phase	Lic	Liquid		Liquid		por	Vapo	
Feedstock Euro Hung BC 1 BC 2								
In series Fractional Condensation								
Total Cond.	3		3		3	•	3	

122

100

90

250

208

110

105

90

300

240

100 220

✓Conclusions and ➤Recommendations

Main Cond.

Temp. 1

Temp. 2

Temp. 3

- ✓ Fractional condensation and distillation can improve pyrolytic oil parameters to fall closer to SAF standards.
- Flash point and the final boiling point can be significantly adjusted via separation processing.
- ✓ There are major trade-offs between flash point and final

boiling point, and LHVs and density.

- > Further dynamic simulations are suggested.
- Linear mixing to improve parameters may be viable, excluding flash point and final boiling point.
- Further optimizations should be considered, such as reflux ratio, feed mixing and possibly combining distillation and condensation setups.

Postgraduate Symposium 2023

Chemical Engineering

forward together · sonke siya phambili · saam vorentoe