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Aim

To develop a scalable procedure that can be readily tailored for current Good Manufacturing Practices
_(cGMP)-compliant production to produce T/RNAP, Pyrophosphatase and vaccinia capping enzyme. -

Objectives

» To use new strains of Escherichia coli and Pichia pastoris to express T/RNAP, Vaccinia capping enzyme,
and Inorganic pyrophosphatase

» To identify, test and select upstream and downstream unit operations for the scale up of the
recombinant enzyme production process.

* To investigate, the feasibility of scaled up process in a 5 L bioreactor and associated purification steps

» To troubleshoot and optimize productivity and yields of recombinant enzymes in a 5 L bioreactor

» To scale-up the optimized process to 20 L bioreactor cultivation and the associated purification steps
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Figure 2: Upstream heterologous protein Figure 3: Simplified downstream protein purification
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