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1. Introduction/Background

« South Africa: heavily reliant on coal >> releases large amounts of greenhouse gases (GHG) ],

* Anaerobic digestion (AD) - processes organic wastes >> produces biogas and digestate >> decreases GHG emissions by capturing
methane produced in biogas!?.

« Biogas >> produce heat and electricity - digestate >> recover water and use as fertiliserl3l.

« AD pitfalls: slow hydrolysis rate of lighocellulosic biomass, process instability >> volatile fatty acid (VFA) accumulation at high
organic loading rates, production of hydrogen sulphide gas (H,S) >> highly corrosivel4>1

* Micro-aeration (MA) - exposes facultative bacteria to low levels of O, >> increases bacteria growth rate, activity and diversity >>
increases hydrolytic enzyme production >> improves hydrolysis and methane yield, controls VFAs (stable process), and H,S
scavenginglé /1,

« Three MAranges: 0.005 - 0.01 (low), 0.01 - 0.2 (medium), 0.2 - 5.0 L O,/L reactor/day (high)l.

Range used depends on substrate and desired outcome >> medium/high for hydrolysis and low for process stabilityl’].

4. Progress to date

Carbon-to-nitrogen optimisation:

2. Aim and Objectives

Aim:

Enhance AD of organic wastes by improving hydrolysis of
lignocellulosic biomass and controlling VFA accumulation
through MA.

Objectives:
e Develop MA system to introduce and control aeration rates.

e Determine baseline for methane yield, VFA production, and
composition of corn stover (CS) before and after AD.

o 20:1; 25:1; 30:1 ratios investigated -> 30:1 best methane
yield.
 C/N ratio 30:1 used in further co-digestion runs.

Micro-aeration: Corn stover hydrolysis
- 0.1,0.6, 1.0 L O,/L reactor/day investigated >> equivalent
to 12, 70, 100 ml.../min.

air

« 0.1 LO,/L reactor/day highest specific methane yield (SMY)

of 193.95 ml CH,/g VS among aerated runs >> 10.2% less

e [nvestigate effect of MA on hydrolysis of mono-digested CS than non-aerated CS (216.09 ml CH,/g VS ).

and process stability of co-digested CS and food waste (FW). /
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* Inoculum-to-substrate = 2:1
« Total solids of substrate diluted to 10% with deionised H-O0.

Carbon-to-nitrogen (C/N) optimisation:
* Biochemical methane potential (BMP) tests conducted to .
determine optimal C/N ratio for co-digestion.
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Figure 6: SMY for the aerated and non-aerated CS runs (A1 = 12 ml/min, A2 = 70 ml/min, A3 = 100 ml/min)

Aerated runs showed higher VFA concentrations compared to
control >> specifically acetic acid.
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Figure 8: Acetic acid concentration of the aerated and non-aerated CS runs (A1 = 12 ml/min, A2 = 70 ml/min, A3 =
100 ml/min, Blank 1 = inoculum used in control runs, Blank 2 = inoculum used in aerated runs).

« MACS runs do not show SMY or hydrolysis rate
improvement >> indicating O, levels are too high.
* Next steps include investigating lower O, levels before

moving on to the process stability of co-digestion. L

Figure 1: Digesters for experimental work.
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