

Optimisation of protein content during spray drying of Black soldier fly larvae protein. D P. Chakawa and N.J. Goosen

Dept. Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

- In 2050, there will be a global shortage of protein to meet anticipated population growth from the current 7 to 11 billion people (van Huis, 2016)
- Insects are promising alternative protein sources that are capable of complimenting protein supply since they have a protein content of 37-65% and all essential amino acids required for human diet (Barragan-Fonseca et al., 2017)
- Black soldier fly larvae (BSFL) protein is a promising source of insect protein that can compliment protein supply
- BSFL protein has to be processed into a powder form so that it can be used in various food applications that include baby formulae, soups, nutraceuticals, protein shakes and protein bars
- Therefore, optimum spray drying conditions have to be investigated that will increase protein content in the powder product to produce high grade protein powder

Experimental approach

Results and discussion

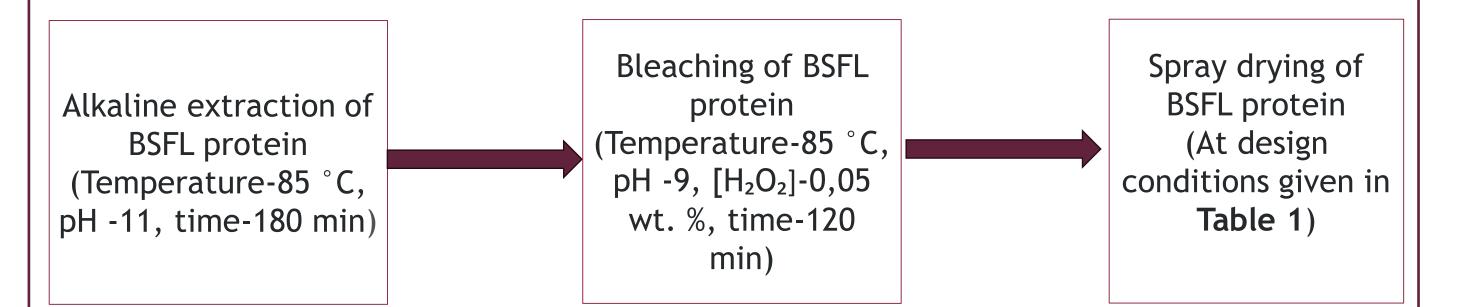


Figure 1 Experimental approach for optimisation of protein content during spray drying.

 Table 1
 Independent factors and experimental
 domains for optimisation using a Central Composite Design (CCD.

Independent	Experimental
factors	domain
Temperature (°C)	180 - 220
Feed flow rate (L/h)	0.06 - 0.23
Maltodextrin content (%)	5 - 25

- Figure 1 shows the experimental approach undertaken protein optimisation
- Table 1 shows the experimental domains for independent factors used during optimisation

Experimental setup

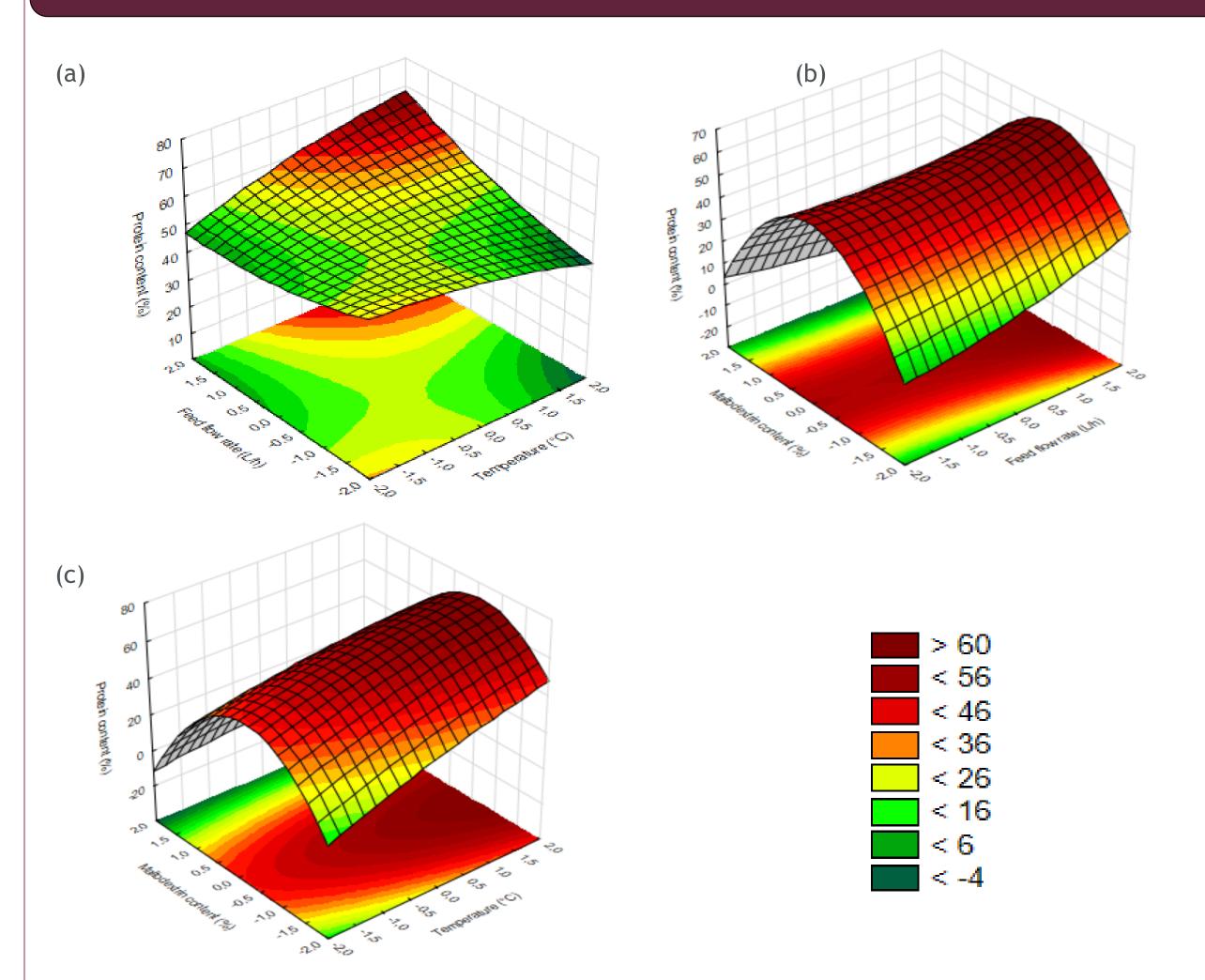


Figure 3 Response surfaces for optimisation of protein content during spray drying of bleached BSFL protein. (a) Surface plot of feed flow rate (L/h) and temperature (°C) at a constant maltodextrin concentration of 15% (b) Surface plot of maltodextrin concentration (%) and temperature (°C) at a constant feed flow rate of 0.15 L/h (c) Surface plot of maltodextrin (%) and feed flow rate (L/h) at a constant temperature of 200 $^{\circ}$ C.

Figure 4 Conversion of raw BSFL to a white protein powder

Results and discussion

 Table 2 ANOVA table for optimisation of protein
 content during spray drying of protein.

Factor	SS	df	MS	F	р	*M+ 3.54 T*F - 0.0255 T*M- 6.82
Temperature (°C) (L)	11,554	1	11,554	0,62918	0,457868	F*M-1.1
Temperature (°C) (Q)	5,023	1	5,023	0,27353	0,619718	
Feed flow rate (L/h) (L)	58,1	1	58,1	3,16383	0,1256	 Optimum conditions
Feed flow rate (L/h) (Q)	6,79	1	6,79	0,36974	0,565434	• T= 220 °C , M= 15% and F= 0,23
Maltodextrin concentration (%) (L)	365,998	1	365,998	19,93042	0,004263	L/h
Maltodextrin concentration (%) (Q)	1288,852	1	1288,852	70,18448	0,000157	Where: P= protein content (%), M= maltodextrin content (%), T= temperature (°C) and F= feed flow
1L by 2L	39,161	1	39,161	2,13253	0,1945	rate (L/h)
1L by 3L	28,501	1	28,501	1,55204	0,259275	
2L by 3L	36,551	1	36,551	1,9904	0,207984	 Predicted optimum protein
Error	110,183	6	18,364			content = 52,3%
Total SS	2395,419	15				• Experimental optimum protein /
						content= 51.1%

Regression equation

- P=9 0.19 T 474 F + 15.26 M + 0.0004 T*T- 437 F*F - 0.3401 M

Conclusions and recommendations

- Optimum spray drying conditions: temperature-220 °C, maltodextrin content- 15% and feed flow rate = 0,23 L/h
- Optimum experimental protein content =51,1% (1.1% lower than predicted protein content)
- Spray drying conditions for optimising powder yield need to be investigated
- Powder properties for the BSFL powder need to be investigated to determine the behaviour of the powder at different humidity conditions during storage

References

van Huis, A. 2022. Edible insects: Challenges and prospects. Entomological Research, 52:161-177. DOI: 10.1111/1748-5967.12582

Barragan-Fonseca, K.B., Dicke, M. & van Loon, J.J.A. 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed - a review. Journal of Insects as Food and Feed, 3(2):105-120. DOI: 10.3920/JIFF2016.0055

Postgraduate Symposium 2023

Chemical Engineering

forward together \cdot sonke siya phambili \cdot saam vorentoe