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Figure 3: MCM algorithm for an isothermal array. 
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ARRAY FORMATION

• Matrix completion methods (MCMs) are proposed for pseudo-data generation towards fundamental model improvement.

• MCMs leverage sparse data sets, offering an advantage over other machine learning methods.

• The MCM was used to predict the excess enthalpy of binary liquid mixtures to determine if the method could be used on 

composition dependent data. It has been used previously on activity coefficients at infinite dilution [1]. 

• The pseudo-data can be used for parameterising thermodynamic models: potential to decrease reliance on experiments.

• Isothermal and constant composition matrix slices can be 

completed as they have randomly missing entries [2].

• Symmetrical matrices across diagonal: halves array size.

• The MCM can find compound ‘personalities’ using SVD 

(singular value decomposition).

• Smooth predictions for 

compositional variation, 

therefore the coherence 

constraint was successful.

• The MCM  outperformed 

UNIFAC (Dortmund) for 85% 

of mixtures. 

• The MCM can be used for 

pseudo-data generation. 

• MCM algorithm repeated for every array mixture (LOOCV).

• Initial guesses must be used for SVD to be applied. 

• The coherence of predictions was maintained by 

removing outliers.

Fig 4: Parity plot of the MCM predictions at 298.15K (left), square root of the mean squared 

error (SMSE) and average absolute relative deviation (AARD) of predictions and winsorized 

counterparts (5% best and worst predictions removed) for the predictions for the 

temperatures attempted (right), using UNIFAC (Dortmund) initial guesses.

Fig. 2: A small 3-way array at 298.15K and a matrix slice at 10% of compound 1 illustrating 

diagonal symmetry of composition. The upper triangle contains 10% of ethane and 90% 

propanol, and the lower triangle contains 10% propanol and 90% ethane.

Fig 1: Interpolated data for (left to right) ethane and methanol, 1-hexene and 

cyclohexane, ethane and propane, and butanone and dodecane at 298.15K. 

• 4-way array: compound 1 and 2 (categorical), mole 

fraction, and temperature (continuous). 

• Discretised composition after using polynomial fits to 

experimental data: interpolate random experimental 

intervals to generate 5% “slices” of compound 1. 

Types of guesses attempted for missing data:

• UNIFAC (Dortmund) [3]

• Average of the 5 most similar mixtures 

• Column and row averages from the same 

triangle

Good MCM predictions in evidence for:
• UNIFAC initial guesses → encodes explicit features. 

• High % observed data for similar mixtures.
• >12% observed entries in the array → array at 303.15K was 

11% observed. 

• Binary association code (BAC) groups [4] were used to 

assess performance for different types of intermolecular 

forces. BAC5 (mixtures in which self-association takes 

place) performed best. 

Approach to initial guesses

Fig 5: Some results of the MCM on the 298.15K using UNIFAC (Dortmund) initial guesses, 

compared to UNIFAC (Do) and experimental data. BAC groups given in brackets.  

Fig 6: Histogram of the MCM and UNIFAC 

predictions at 298.15K.
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