

Phase behaviour of CO_2 + solute + solute ternary mixtures including 1-alcohols, *n*-alkanes, carboxylic acids and methyl esters

S.H. Du Plessis, C.E. Schwarz* Department of Chemical Engineering, Stellenbosch University, Banghoekweg, Stellenbosch, 7600, South Africa, *Email: cschwarz@sun.ac.za, Tel: +27 21 808 4485

Introduction

Supercritical (SC) fluids are an attractive alternative to traditional organic solvents. SC CO_2 is a popular solvent due to its availability, cost, non-toxicity and it is generally regarded as safe. Knowledge of the phase behaviour of CO_2 containing systems is thus necessary.

Carbon Dioxide + 1-Alcohols + *n*-Alkanes

Complex phase behaviour & significant solute + solute interactions

Thoroughly investigated

300

What about other CO_2 + solute + solute systems?

Experimental methodology

Experimental design

- High-pressure bubble- and dew-point (HPBDP) data measured using a variable volume static synthetic view-cell (Figure 1) with a maximum pressure of 300 bar
- Solute mass fractions ranged from 0.015 0.65
- Six temperatures considered between 308K-358K at 10K intervals

Figure 1: Static synthetic view-cell experimental set-up redrawn from Schwarz^[1]

Five groups of solute + solute mixtures in CO₂ considered Solutes included C_8 and C_{10} 1-alcohols and carboxylic acids and C₁₂ and C₁₄ *n*-alkanes and methyl esters

Only 50:50wt% mixtures considered to identify which groups of systems presented complex phase behaviour

Results and major findings

 CO_2 + 1-octanol and CO_2 + 1-decanol binaries exhibit temperature inversions, but only $CO_7 + 1$ -decanol + n-decanoic acid ternary showed a temperature inversion (Figure 2) ● 308.2 K ▲ 318.2 K ■ 328.2 K ★ 338.2 K ◆ 348.2 K + 358.2 K

- The phase behaviour of the 1-alcohol + methyl ester groups is almost identical to the methyl ester binary data (Figure 3), indicating significant solute-solute interactions 350 т 1-Octanol + Methyl laurate
 - ◇ 1-Decanol + Methyl laurate

Solute mass fraction The n-tetradecane systems showed more significant co-solvency effects than the n-dodecane containing systems (Figure 4)

◇ n-Tetradecane + Octanoic acid

- ♦ n-Tetradecane
- n-Dodecane + Octanoic acid
- Octanoic acid
- n-Dodecane

1.0

Figure 3: HPBDP data for CO_2 + 1-octanol + methyl laurate, CO_2 + 1-decanol + methyl laurate and the constituent binaries at 308.2 K^[2,3].

Co-solvency effects observed in each group except for the methyl ester + carboxylic acid systems (Figure 5)

Figure 5: HPBDP data for CO_2 + decanoic acid + methyl myristate (teal markers), CO_2 + decanoic acid^[6] (maroon markers) and CO_2 + methyl myristate (gold markers) at 308.2 K (●), 328.2 K (◆) and 348.2 K (▲). Trendlines added as a visual aid only.

Solute mass fraction

Figure 4: HPBDP data for CO_2 + n-Dodecane + Octanoic acid and CO_2 + n-Tetradecane + Octanoic acid and the constituent binaries at 308.2 $K^{[4,5]}$.

Conclusions

• Complex phase behaviour observed in the CO₂ + 1-alcohol + carboxylic acid/methyl ester and CO₂ + n-alkane + carboxylic acid/methyl ester groups, but not in the CO_2 + carboxylic acid + methyl ester group

Co-solvency effects most significant for n-tetradecane systems and the 1-alcohol + methyl ester group

References: [1] Schwarz, C.E. (2001) "Phase equilibrium of alkanes and supercritical fluids", Masters Thesis in Chemical Engineering [2] Fourie, F.C. v. N., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2008), Journal of Supercritical Fluids, 47(2), pp. 161-167. [3] Zamudio, M., Schwarz, C.E. and S C.E. and Knoetze, J.H. (2011a), Journal of Supercritical Fluids, 59, pp. 14-26. [4] Zamudio, M., Schwarz, C.E. and Knoetze, J.H. (2013), Journal of Supercritical Fluids, 84, pp. 132-145. [5] Byun, H.S., Kim, K. and McHugh, M.A. (2000), Industrial and Engineering Chemistry Research, 39(12), pp. 4580-4587. [6] Schwarz, C.E. and Knoetze J.H. (2012), Journal of Supercritical Fluids, 66, pp. 36-48

The financial assistance of SASOL (Pty. Ltd.) and the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to SASOL and NRF.

forward together \cdot sonke siya phambili \cdot saam vorentoe